Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Bioeng Transl Med ; 6(3): e10241, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1432366

ABSTRACT

Wearable Awareness Through Continuous Hidrosis (WATCH) sensor is a sweat based monitoring platform that tracks cortisol and glucose for the purpose of understanding metabolic responses related to macronutrient consumption. In this research article, we have demonstrated the ability of tracking these two biomarkers in passive human sweat over a workday period (8 h) for 10 human subjects in conjunction with their macronutrient consumption. The validation of the WATCH sensor performance was carried out via standard reference methods such as Luminex and ELISA This is a first demonstration of a passive sweat sensing technology that can detect interrelated dual metabolites, cortisol, and glucose, on a single sensing platform. The significance of detecting the two biomarkers simultaneously is that capturing the body's metabolic and endocrinal responses to dietary triggers can lead to improved lifestyle management. For sweat cortisol, we achieved a detection limit of 1 ng/ml (range ∼1-12.5 ng/ml) with Pearson's "r" of 0.897 in reference studies and 0.868 in WATCH studies. Similarly, for sweat glucose, we achieved a detection limit of 1 mg/dl (range ∼ 1-11 mg/dl) with Pearson's "r" of 0.968 in reference studies and 0.947 in WATCH studies, respectively. The statistical robustness of the WATCH sensor was established through the Bland-Altman analysis, whereby the sweat cortisol and sweat glucose levels are comparable to the standard reference method. The probability distribution (t-test), power analysis (power 0.82-0.87), α = 0.05. Mean absolute relative difference (MARD) outcome of Ë·5.10-5.15% further confirmed the statistical robustness of the sweat sensing WATCH device output.

2.
Bioeng Transl Med ; 6(3): e10220, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1432365

ABSTRACT

This work presents the viability of passive eccrine sweat as a functional biofluid toward tracking the human body's inflammatory response. Cytokines are biomarkers that orchestrate the manifestation and progression of an infection/inflammatory event. Hence, noninvasive, real-time monitoring of cytokines can be pivotal in assessing the progression of infection/inflammatory event, which may be feasible through monitoring of host immune markers in eccrine sweat. This work is the first experimental proof demonstrating the ability to detect inflammation/infection such as fever, FLU directly from passively expressed sweat in human subjects using a wearable "SWEATSENSER" device. The developed SWEATSENSER device demonstrates stable, real-time monitoring of inflammatory cytokines in passive sweat. An accuracy of >90% and specificity >95% was achieved using SWEATSENSER for a panel of cytokines (interleukin-6, interleukin-8, interleukin-10, and tumor necrosis factor-α) over an analytical range of 0.2-200 pg mL-1. The SWEATSENSER demonstrated a correlation of Pearson's r > 0.98 for the study biomarkers in a cohort of 26 subjects when correlated with standard reference method. Comparable IL-8 levels (2-15 pg mL-1) between systemic circulation (serum) and eccrine sweat through clinical studies in a cohort of 15 subjects, and the ability to distinguish healthy and sick (infection) cohort using inflammatory cytokines in sweat provides pioneering evidence of the SWEATSENSER technology for noninvasive tracking of host immune response biomarkers. Such a wearable device can offer significant strides in improving prognosis and provide personalized therapeutic treatment for several inflammatory/infectious diseases.

SELECTION OF CITATIONS
SEARCH DETAIL